ALPHA EMITTERS IN NUCLEAR MEDICINE:

from the physical dose to the biological effects in target and non-target tissues

65

Rosa Sciuto¹, Alessio Annovazzi¹, Sandra Rea¹, Rosella Pasqualoni¹, Serenella Bergomi¹, Pasquale lannantuono ¹, Luisa Romano¹, Costanza Mazzone¹, A.Testa³, V. Dini⁴, A. Soriani² and Lidia Strigari² Nuclear Medicine¹ and Laboratory of Medical Physics and Expert Systems ² Departments IRCCS – Regina Elena National Cancer Institute, Rome, Italy; ENEA Casaccia³ and ISS⁴, Rome, Italy

INTRODUCTION

Alpha-Targeted Therapy is emerging as a promising new modality for treatment of a variety of malignancies and a number of α -emitters are under investigation for clinical use. However, the delivery of the α -particle energy to the cancer cells without toxicity to healthy tissues has still been the challenge and the limiting factor. **TO NOTE** : α-emitters Radiobiology & Dosimetry are not well known at today

Radium-223 (²²³Ra) is the first targeted α therapy approved for clinical use for the treatment of patients (Pts) with metastatic castration resistant prostate cancer (mCRPC) with symptomatic bone metastases and no known visceral metastatic disease. More than **50.000 treatments** / world have been performed **until today with the standard schedule** (six ²²³Ra injections of 55 kBq/kg every 4-week)

Schedules based on body weight may not be the most appropriate therapy for each patient considering the wide difference in clinical presentation of mCRPC and in ²²³Ra bone uptake A personalized treatment schedule based on 3D

The challenge

IMPROVE KNOWLEDGE OF α -EMITTERS RADIOBIOLOGICAL **EFFECTS**

> VALIDATE α DOSIMETRY **METHODOLOGY**

PERSONALIZE α -EMITTERS TREATMENT

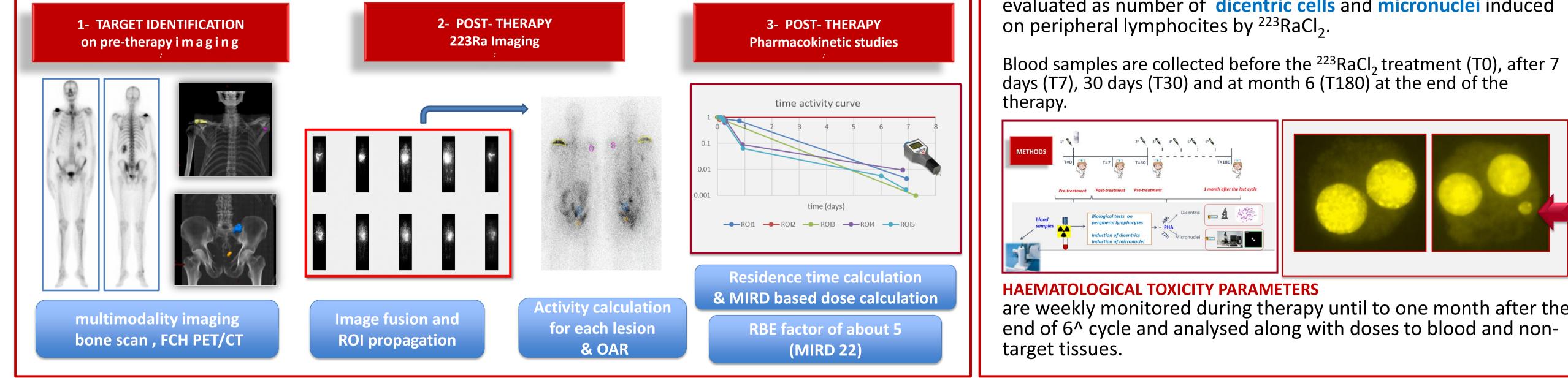
DESIGN OF THE STUDY :

Phase II feasibility study on **15 mCRPC** pts. undergoing standard six ²²³Ra injections with the following aims:

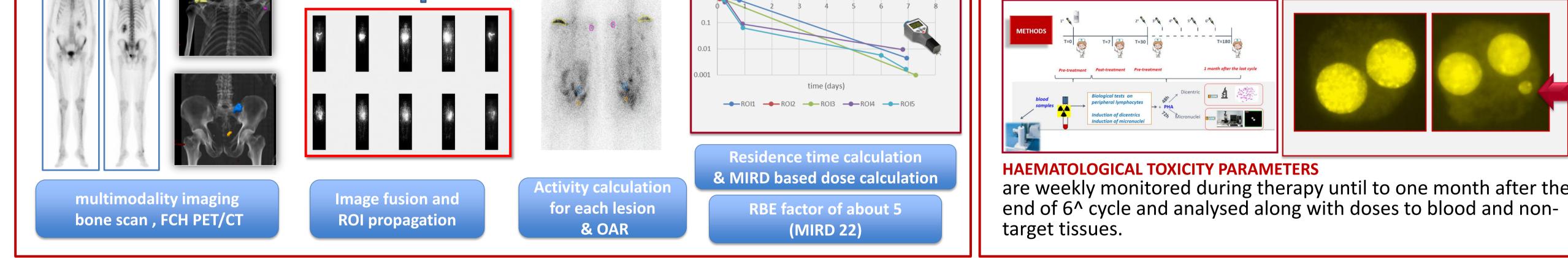
assess alpha emitters **DOSIMETRY FEASIBILITY** in clinical practice

evaluate **BIOLOGICAL EFFECTS** of ²²³Ra on mCRPC - radiation-induced chromosome damage on lymphocites

correlate the target / non target DOSIMETRY with


- clinical results (efficacy and haemathological toxicity)
- biological effects (dicentric and micronuclei induction)

Next study RCT to compare PERSONALIZED **TREATMENT** dosimetry based (Arm 1 : 32 pts) against **STANDARD TREATMENT** (Arm 2 : 32 pts)


METHODS

PHYSICAL DOSIMETRY is performed at each radium administration according to SPET/CT calibration protocol

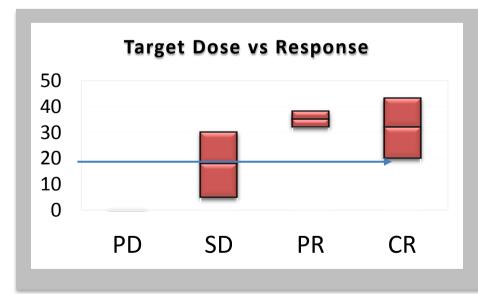
METHODS

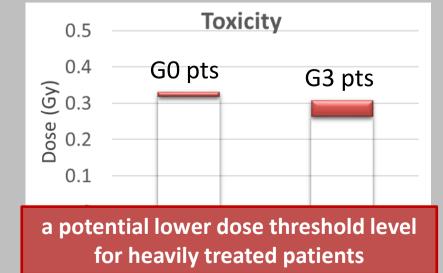
BIOLOGICAL EFFECTS & RADIATION-induced CHROMOSOME DAMAGE are evaluated as number of **dicentric cells** and **micronuclei** induced

PRELIMINARY RESULTS – Dosimetry

TARGET DOSIMETRY & RESPONSE

1. Target doses ranged from


0.001 Gy to 43.7 Gy (median 30.1 Gy)


2. A dose response relationship for target lesions has been observed with a threshold of 20 Gy

NON TARGET DOSIMETRY & TOXICITY

Red marrow dose was < 2 Gy limit in all cases

- patients without any haematological toxicity received higher red marrow dose
- patients with G3 haematological toxicity (anemia), previously treated with CHT, received lower dose

0,5

extra dose by the emission from target organs.

Pt. 2

Pt. 1

administration @ T = 7 - expression of ²²³Ra induced damage

Pt. 3

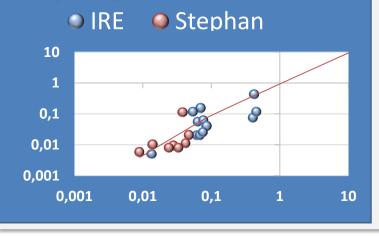
PRELIMINARY RESULTS – Biological Effects

1 Baseline dicentric/cell is higher than general population with a wide inter-individual variability @T=0

3 Further increase in DC frequency @ T = 30 (before the 2nd cycle) without further administration and @

T180 (end therapy). The increase of chromosome damage (almost double) observed between T7 and

T30 is not due to an ²²³RaCl₂ addition dose, suggesting that circulating lymphocytes were exposed to an


Pt. 5

7 A statistical significant increased frequency of chromosomal aberrations is registered after

Pt. 4

5 A linear correlation has been found between dosage and number of dicentric in agreement with Sthephen results obtained with 224 Radium in ankylosing spondylitis.

Impact of the study

PREDICTIVE ROLE OF DOSIMETRY, for both clinical outcome and biological effect, is expected to allow a personalized treatment that is still missing worldwide for α -emitters

<u>BIOLOGICAL EFFECTS</u> need to be clearly elucidated before an exstensive α-emitters clinical use

