Dysregulation of microRNA biogenesis in cancer: the impact of mutant p53 proteins

Francesca Garibaldi¹, Carmen Greco¹, D Trisciuoglio², Teresa Colombo³, Kamil Lisek⁴, Dawid Walerych⁴, Giannino Del Sal⁴, Paola Paci³, Gianluca Bossi⁵, Giulia Piaggio¹, Aymone Gurtner¹

¹IRCCS Regina Elena National Cancer Institute, UOSD SAFU, Rome Italy.²IBPM, National Research Council, Rome, Italy. ³Institute for Computing Applications "Mauro Picone", National Research Council, Rome, Italy.⁴Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste, Italy.⁵IRCCS Regina Elena National Cancer Institute, UOSD Medical Physics, Rome Italy.

Abstract

The TP53 tumor suppressor gene is mutated in half of human tumors resulting in an oncogene with Gain-Of-Function (GOF) activities. The global miRNA deregulation observed in human cancers is often the result of defects in the miRNA biogenesis pathway. Only a handful of miRNAs have been identified as direct targets of mutant p53 protein (mutp53) at transcriptional level, and very few data about the role of mutp53 on deregulation of miRNA biogenesis in cancer are available yet (Falcone et al., 2016; Gurtner et al., 2017). We have previously unveiled a new mechanism by which mutp53 regulates miRNA biogenesis at posttranscriptional level impacting on microprocessor complex activity and inhibiting the processing of pri-miRNA in pre-miRNA. Briefly, our data of a genome wide analysis of miRNA expression in colon cancer cell line, before and after depletion of mutp53 (R273H), revealed that this oncogene downregulates 33, and upregulates 4 of 376 miRNAs analyzed (Figure 1). Several of these miRNAs were validated in breast cancer cell lines. Interestingly, interrogating the TCGA database about miRNA expression levels in samples of breast cancer patients, we found that our mutp53-dependent miRNAs are downregulated in cancer samples expressing mutp53, too (Figure 1C). From a mechanistic point of view, by confocal analysis, co-immunoprecipitation experiments (Figure 2A,B,C) and RNA-IPs (Figure 2D,E) we demonstrate for the first time that endogenous mutp53 directly binds to the RNA helicase p72 in the nucleus of colon and breast cancer cells thus preventing its association to Drosha and pri-miRNA targets, resulting in the inhibition of miRNA biogenesis (Figure 3). Thus the mechanism we found in the cells could also be relevant in human tumors (Garibaldi et al., 2016). We have now evidences of a new transcriptionally independent function of mutp53 in miRNA biogenesis that, impacting on Dicer activity, inhibits the processing of pre-miRNA in mature miRNAs. In details, by co-immunoprecipitation experiments (Figure 4A), confocal analysis (Figure 4B), RNA-ChIPs (Figure 4C) and Dicer overexpression (Figure 4D,E) we demonstrate that mutp53 directly binds Dicer affecting its interaction with pre-miRNAs. Of note, we have designed and setup an in vivo pre-miRNA processing assay to monitor mutp53 dependent Dicer activity (Figure 5A). Using this system we demonstrate that mutp53 impairs Dicer-mediated pre-miRNA processing (Figure 5, 6) (unpublished data). The relevance of the above identified molecular mechanisms resides on the fact that the identified mutp53-dependent miRNAs have oncosuppressor functions such as the induction of cell death, inhibition of proliferation and EMT has demonstrated by literature and our unpublished data (Figure 7, 8). Finally, the KEGG pathway (Table 1) and GO analyses (Table 2) of putative target genes of the mutp53-dependent miRNAs identifies several pathways and genes related to cancer among which EGF and FGF signaling, cell cycle, mitosis, cell death and stress response. Interestingly, many of the genes belonging to these categories have oncogenic potential and are known as key regulators of altered molecular pathways in tumors. Moreover, for many of these there are drugs already approved by the FDA or in clinical trials (unpublished data). Therefore, our data support the idea that mutp53, inhibiting the expression of specific miRNAs, upregulates a subset of genes involved in tumor progression, including genes already targeted by molecular drugs.

Mutant p53 inhibits pri-miRNA biogenesis by interfering with the microprocessor complex

-Garibaldi et al. Oncogene 2016 -Gurtner et al. Biochim Biophys Acta. 2017

Proposed model

33

33 mature miRNAs are down-regulated by mutp53

Mutp53 binds and sequesters p72 from Microprocessor complex

p72/82

experiments of genome wide analysis of miRNA expression (super-array plate, SABiosciences technologies) is shown. The 37 miRNAs were divided into three

graphs based on the levels of expression. B) Western blot analysis performed on total lysates from SW480 after stable infection with either sh-p53 or control

lentiviruses. C) Hierarchical clustering of miRNA differentially expressed in breast carcinoma samples with missense mutation in the p53 gene (N=91) versus

normal breast samples (N=80) obtained from TCGA.

RIP

Figure 2. Immunoprecipitation (IP) assays performed with nuclear extracts of SW480, before (scr) and after (sh) depletion of mutp53, with anti-Drosha (A), anti-p72 (B), anti-p53 (C) antibodies . RIP analysis for association between pri-miRs and Drosha (D) and p72 (E) in SW480 cells before and after depletion of mutp53. Drosha and p72 were immunoprecipitated and subjected to RT–PCR analysis. As controls, RNA samples imunoprecipitated with non-specific IgG (IgG) was subjected to PCR . 1 of 3 experiments is represented.

Figure 3. Proposed moldel

Mutant p53 inhibits pre-miRNA biogenesis by interfering with Dicer activity (unpublished)

Mutp53 inhibits Dicer-mediated pre-miRNA processing

Figure 5. A) A schematic model for in vivo monitoring of premiRNA processing. B) In vivo pre-miR-517a processing assay on HCT116 cells. The luciferase activity of pre-517a-Luc is increased compared to empty vector. Moreover this increase correspond to a decrease of exogenous mature miR-517a (RTqPCR), demonstrating that the processing of the premiRNA cloned into the luciferase reporter vector is inhibited by mutp53. C) In vivo pre-miR-517a processing assay on shscr and sh-p53 HT29 and SW480 cells transfected with ctrl-Luc or pre-517a-Luc.

Proposed model

Figure 4. A) Immunoprecipitation (IP) assay was performed with cytoplasmic extracts of sh-scr and sh-p53 SW480 cells using antibodies against endogenous mutp53. B) Colocalization (yellow) of endogenous mutp53 (red) with Dicer (green) was analyzed by indirect immunofluorescence combined with Confocal Scanning Laser Microscopy. Confocal analysis of single optical section is shown. C) RIP analysis for pre-miRNA-Dicer association in sh-scr and sh-p53 SW480 cells performed with Cytoplasmic extracts. D) WB analysis performed on total lysates from sh-scr SW480 transfected with control vector (sh-scr+ctrl), sh-scr SW480 transfected with Dicer (sh-scr+Dicer), sh-p53 SW480 transfected with control vector (sh-p53+ctrl) or sh-p53 SW480 transfected with Dicer (sh-p53+Dicer). E) RT-qPCR analysis of 2 mature miRNAs in SW480 cells described above (4D).

Figure 6. Proposed moldel

Functional role of mutp53-regulated miRNAs (unpublished)

3'UTR

 \mathbf{E}

SRSF1/SF2 gene

SRSF1

Alternative splicing

Apoptosis

Cell Transformation

Cell motility

EMT

miR-517a impairs cell proliferation and survival on colon cancer cell lines and inhibits

25

20

3)

Ctr

∧Dav

Ctr

miR-517a of treatment

14g 17g 20g 23g 26g 28g 31g 34g

Days afther inoculation

Figure 7. A) HCT116, SW480 and WiDr cells were transfected with a synthetic miR-517a or miR-NC (Ctr); viable cell number were counted daily. Mean of 4 independent experiments are reported. B) Effects of formulated miR-517a in HCT116 tumors by local injections. 2X106 cells/mouse of HCT116 were subcutaneously implanted into nude mice (Nod Scid) and once the tumor reached a palpable volume (day 14), 20 µg of formulated miR-517a or miR-NC as controls was injected into the tumor, for a total of 4 injection, each repeated every 3 days. Caliper measurements were taken on the days indicated and averaged. n5/group.

SRSF1/SF2 is down-regulated upon miR-517a over-expression

Figure 8. A) Analysis of 4825 bp of the 3'UTR of SF2. 6428 miR-517a results to putatively bind the 3' UTR of SRSF1/SF2 in at least 5 bioinformatics tools (miRANDA, mirwalk, pictar5, pita, targetscan, RNA hybrid, Diana). B) schematic representation of the pro-oncogenic functions of the Splicing Factor SRSF1/SF2. C) WB ugUGAGAUUUCCCUACGUGCUa 5' hsa-miR-517a analysis performed on total lysates from WiDr transfected with a synthetic miR-517a or miR-NC (Ctr). 3581:5 'gaGCCCUUAA---- GAUGCACGAu 3' SFRS1 D) WB analysis performed from sh-scr and sh-p53 SW480 cells. E) WB analysis performed on total lysates from HCT116 Dicer KO and HCT116 transfected with mutp53 expression vector or control vector.

SRSF1

Table 1KEGG pathway enrichment analysisfor predicted mutp53 dependentmiRNA target genes		Table 2Gene ontology (GO) category analysisfor predicted mutp53 dependentmiRNA target genes	
KEGG pathway	p-value	GO Category	p-value
TGF-beta signaling pathway	4,55E-06	mitotic cell cycle	<1E-325
Hippo signaling pathway	4,55E-06	Transcription	<1E-325
Glioma	7,59E-06	cellular component assembly	<1E-325
ErbB signaling pathway	1.68E-05	small molecule metabolic process	<1E-325
Adherens junction	0.000522	catabolic process	<1E-325
Wnt signaling pathway	0,000522	epidermal growth factor receptor signaling pathway	<1E-325
Ubiquitin mediated proteolysis	0,0008	fibroblast growth factor receptor signaling pathway	<1E-325
Pathways in cancer	0,001113		
PI3K-Akt signaling pathway	0,001146	gene expression	<1E-325
Cell cycle	0,001518	response to stress	4.90474E-12
Prostate cancer	0,001635		2 722295 09
Signaling pathways regulating pluripotency of stem cells	0,001635	membrane organization	2,72238E-08
Franscriptional misregulation in cancer	0,001908	cell death	4,74561E-08
Pancreatic cancer	0,00321	DNA metabolic process	1,5239E-05
Melanoma	0,008619	cellular protein metabolic process	0,00032493
Ras signaling pathway	0,010518	cellular lipid metabolic process	0,000351895
nTOR signaling pathway	0,012188	transcription initiation from RNA polymerase II promoter	0,001035799
Colorectal cancer	0,012225		
Non-small cell lung cancer	0,015084	^ cell-cell signaling	0 002144716
HIF-1 signaling pathway	0,016208		0,002144/10
Acute myeloid leukemia	0,016208	post-translational protein modification	0,004886914
Endometrial cancer	0,016594	G2/M transition of mitotic cell cycle	0,006198217
Renal cell carcinoma	0,016594	mRNA metabolic process	0,006932925
Focal adhesion	0,017082	RNA splicing	0,01293825
		RNA metabolic process	0.03795545

