HIGH SENSITIVE FLOW CYTOMETRY REMISSION BY Ig LIGHT CHAINS *RATIO* IS A POWERFUL MARKER OF OUTCOME IN MULTIPLE MYELOMA PATIENTS AFTER TANDEM AUTOLOGOUS TRANSPLANT : AN UPDATE OF IRE EXPERIENCE

Iole Cordone1, Francesco Marchesi2, Serena Masi1, Francesco Pisani2, Roberta Merola1, Giovanni Cigliana1, Giulia Orlandi1, Svitlana Gumenyuk2, Francesca Palombi2, Atelda Romano2, Antonio Spadea2, Daniela Renzi2, Elena Papa2, Laura Conti1 and Andrea Mengarelli2 1 IRCCS Regina Elena National Cancer Institute, Clinical Pathology

2 IRCCS Regina Elena National Cancer Institute, Haematology and Stem Cell Transplantation

Background

The achievement of complete response (CR) significantly correlates with a better clinical outcome in multiple myeloma (MM) patients treated with autologous stem cell transplant (ASCT). The depth of response is one of the most relevant factors to predict patient's outcome, however the definition of CR through standard criteria has shown several limitations. A solution to improve upon CR is to use more sensitive response assessment techniques enabling quantification of minimal residual disease (MRD) after treatment. Next generation flow and next generation sequencing are, to date, the more sensitive techniques capable of detecting a single residual malignant plasma cell within 1.000.000 bone marrow cells (sensitivity 10⁻⁶).

FIGURE 1. FLOW CYTOMETRY: KAPPA/LAMBDA RATIO ON CD38^{bright} PC SUB-POPULATIONS

6183-16B BM-Tube_002 IC	6183-16B BM-Tube_002 IC 6183-16B BM-Tube_002 IC P1 CD45- F1 Mielo	Tube: Tube_002 IC			
		Population	#Events	%Parent	%Total
SSCA 150 150		All Events	455,500	####	100.0
οe	⁶⁶ 음클 (Land Pil Mono	P1 Tot	438,810	96.3	96.3
	P1 NRAC	P1 NRBC	6,617	1.5	1.5
	PhLinfo	P1 CD38+	2,339	0.5	0.5
		Q1 CD38 La	598	25.6	0.1
50 100 150 200 250 FSC-A (x 1,000)	10 ² 10 ³ 10 ⁴ 10 ⁵ CD45 APC-Cy7-A		38	1.6	0.0
(1,000)		Q3	0	0.0	0.0
6183-16B BM-Tube_002 IC	6183-16B BM-Tube_002 IC	Q4 CD38 Ka	1,703	72.8	0.4
		P1 CD19p	1,858	79.4	0.4
		P1 CD19p La	552	29.7	0.1
		P2 CD19p Ka	1,259	67.8	0.3
		P1 CD19n	432	18.5	0.1
		P1 CD19n La	39	9.0	0.0
		P2 CD19n Ka	368	85.2	0.1
	- 1 Q3 Q4 CD38 Ka	P1 CD56p	243	10.4	0.1
10 ² 10 ³ 10 ⁴ 10 ⁵ CD38 PE-Cy7-A	∃_Q3_[:::Q4_CD38_Ka 	P1 CD56p La	25	10.3	0.0
CD38 PE-Cy7-A	KAPPA PE-A	P2 CD56p Ka	213	87.7	0.0
6183-16B BM-Tube_002 IC		P1 CD56n	1,853	79.2	0.4
[v		P1 CD56n La	513	27.7	0.1
P1 CD19p		P2 CD56n Ka	1,298	70.0	0.3
P1 CD19p		P1 CD45p	2,160	92.3	0.5
		P1 CD45p La	564	26.1	0.1
		P2 CD45p Ka	1,540	71.3	0.3
		P1 CD45n	136	5.8	0.0
3 [™] ⊆= P1 CD1/9n		P1 CD45n La	27	19.9	0.0
		P2 CD45n Ka	108	79.4	0.0
10^2 10^3 10^4 10^5		01 10 CD19a/CD56a	03	20	0.0

Methods

We evaluated the minimal residual disease (MRD) in 50 consecutive MM patients who underwent an up-front tandem ASCT in our center, using a single-tube six-colors flow cytometry assay (FC) based on intra-cytoplasmic immunoglobulin (cy-Ig) light chains ratio valuated on patient-specific plasma cells (PC) immune profile, in a real-life setting reaching a sensitivity up to 10⁻⁵. More recently, a single-tube 8-colous approach was utilized, increasing the sensitivity up to 10⁻⁶. (Fig.1)

Results

With a sensitivity up to 10^{-5} , clonal-PC were documented by FC in 36.4 % (12/33) of patients in conventional CR after second transplant. The number of flow MRD-negative patients significantly increased after induction and first ASCT, but not between first and second transplant. The 5-years progressionfree survival (5ys-PFS) of flow MRD-negative patients after second transplant was significantly better than patients who remained MRD-positive considering both all patients (5ys-PFS: 70 % vs 5 %) and patients in CR according to standard criteria (5ys-PFS: 67 % vs 0 %). (Fig.2) Utilizing a more sensitive 8-colour flow-MRD approach, with a sensitivity up to 10⁻⁶, we documented a flow-MRD negativity in 45% of cases that were negative by our previous technique. This data are in agreement with the most recent publications that, utilizing a next generation sequencing approach, confirm that MRD identifies patients with an excellent outcome in MM.

Figure 2. Clinical outcome of patients according to flow cytometry assessment. (A) Treatment response by both standard criteria and FC in all check-points of the therapeutic program. 5-years PFS curves according to MRD assessment by flow cytometry after second transplant: all patients (B); patients in CR according to standard criteria (C); patients with intermediate-high cytogenetic risk (D).

Conclusions

FC remission through cy-Ig light ratio on PC sub-populations is a sensitive, highly informative, low-cost and routinely applicable MRD assay, a powerful tool in treatment response evaluation and a crucial marker of outcome in MM. Flow-MRD, as well as next generation sequencing-MRD, both enable the identifications of patients subpopulations with highly different prognosis. High sensitive MRD should be assessed in every prospective trial and is the candidate to become a primary endpoint. Stratified therapy for MM patients according to high sensitive MRD status is at the sunrise.

ABERRANT KAPPA/LAMBDA RATIO: <0.5 OR >4.0

