
M. Marino¹, B. Casini¹, E. Gallo¹, D. Sarti¹, G. Alessandrini², F. Cecere³, N. De Bello², E. Pescarmona¹, F. Facciolo²

¹Pathology, IRCCS Regina Elena National Cancer Institute; ²Thoracic surgery, IRCCS Regina Elena National Cancer Institute; ³Medical Oncology A, IRCCS Regina Elena National Cancer Institute

Background – Among rare tumors, in the last years the National Cancer Institute of US included the Thymoma and Thymic carcinoma (TC) (collectively indicated as TET, Thymic Epithelial Tumors) among cancers to be investigated by the Cancer Genome Atlas (TCGA) Project. Our center contributed cases of tissue and matched blood from our Biobank and participated actively to the data analysis (1). However, the complex genomic events leading to TC development are still largely unknown. At the Pathology Dept. of the IRCCS Regina Elena Natl. Cancer Institute NGS facilities (S5, Thermofisher) are available together with a highly motivated team of molecular biologists.

The results of the TCGA-THYM study showed a low mutational burden in <u>Thymic epithelial</u> <u>tumors (TET)</u> in the series investigated

Tumor mutational burden in TET compared to other 21 different cancer cell types profiled by the TCGA-projects Radovich et al., 2018, Cancer Cell 33, 244–258

STUDY DESIGN

- AIM We performed a Next Generation Analysys (NGS) to investigate the pathogenesis of TC and identify novel targets for therapy. This would provide biological data with relevant prognostic/predictive value.
- MATERIALS Ten TC cases were examined, derived from biopsies/surgical specimens and one matched peritumoral thymic sample. In one case a lung metastatic nodule was available. Six epidermoid carcinoma, 3 undifferentiated carcinoma and one lymphoepithelioma-like carcinoma were investigated. The percentage of neoplastic cells was not < 70-80% of total cells.</p>

February 12, 2018 © 2018 Elsevier Inc. https://doi.org/10.1016/j.ccell.2018.01.003

Therefore a NGS mutational analysis of other cases could allow the identification of further genomic alterations

Study Design

Ion AmpliSeq Cancer Hotspot Panel v2 targets 50 genes

ABL1 AKT1 ALK APC ATM BRAF CDH1 CDKN2A CSF1R CTNNB1	EGFR ERBB2 ERBB4 EZH2 FBXW7 FGFR1 FGFR2 FGFR3 FLT3 GNA11	GNAS GNAQ HNF1A HRAS IDH1 JAK2 JAK3 IDH2 KDR KIT	KRAS MET MLH1 MPL NOTCH1 NPM1 NRAS PDGFRA PIK3CA PTEN	PTPN11 RB1 RET SMAD4 SMARCB1 SMO SRC STK11 TP53 VHL	More than 28 HotSp
--	---	---	--	--	-----------------------

The most used cancer panel for solid tumors to identify

mutations for sensitivity and resistance to targeted

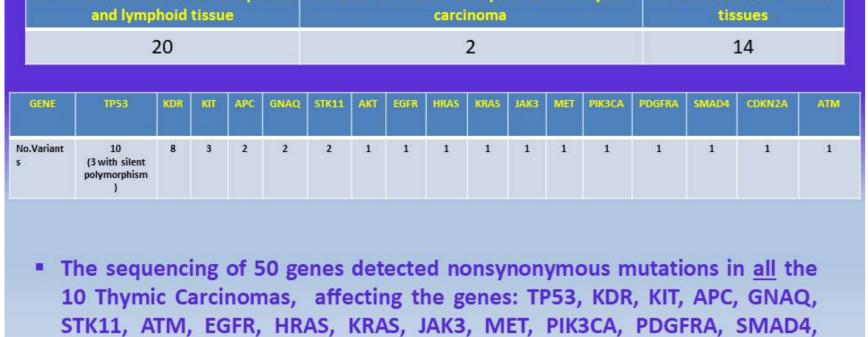
therapies

DO COSMIC

Results

CDKN2A

 The Ion AmpliSeq[™]Cancer Hotspot Panel applied contained part of the common mutations found by the TCGA study in TC.


Variants described in Haematopoietic Variants described in Thymomas and thymic Variants described in other

METHODS - The DNA was extracted using the QIAcube and QIAamp DNA FFPE Tissue Kit (Qiagen, Valencia, CA) from microdissected 5 μm formalin-fixed, paraffin-embedded (FFPE) tissue sections Libraries from Ion AmpliSeq Cancer Hotspot Panel v2 were prepared and sequenced by Ion Chef and S5 system. Data analysis was conducted by using the dedicated Ion Reporter Software.

NGS was performed on Ion Torrent S5 platform by Ion AmpliSeq Cancer Hotspot Panel v2 targeting 50 genes.

■ the Ion AmpliSeq[™]Cancer Hotspot Panel v2 was used; this panel is designed to amplify 207 amplicons covering over 2,800 COSMIC mutations from 50 oncogenes and tumor suppressor genes.

Results				
TP53 Gene Variants	Effect			
c.826G>A; p.A276T (ex. 8) c.322G>A; p. G108S (ex. 4) c.824G>T; p.C275F (ex. 8)	Affecting the DNA Binding domain The reported p53 mutations are described in the			
c.846_847insG; p.R283fs (ex. 8)	international database of Cancer genomics study Cbioportal as causing a protein loss of function in different cancer types			
KIT Gene Variants	Effect			
c.2515G>A; p.E839K (ex. 18)	This variant affects the Kinase domain: this mutation causes resistence to Imatinib; however, preclinical studies indicate that these mutations are sensitive to PKC412			
c.1900C>T; p.R634W (ex. 13)	This KIT identified variant R634W, exon 13, could be considered relevant for target therapy with the Sorafenib multikinase inhibitor			
REGINA ELENA				

Conclusions – in the limited series so far analyzed we found in TC non recurrent variants. In particular we observed p53 variants affecting the DNA binding domain and KIT variants known to affect the kinase domain, as well as a deleterious (E17K) variant in AKT and a KRAS variant already described in TC, inhibiting the use of EGFR targeting therapies.

These preliminary data could have clinical, pathologic, and therapeutic implications for the treatment of thymic malignancies. A wider series of TC will be analyzed. A Transcriptome sequencing would be advisable as next molecular analysis.

The Authors declare no conflict of interests

Results				
AKT Gene Variant	Effect			
c.49G>A; p.E17K (ex. 3)	this variant E17K, previously reported as a deleterious variant in various cancer types, is possibly associated to aberrant AKT activation. Therapeutic targeting by AZD5363, an oral pan-AKT inhibitor, was described Hyman et al, J Clin Oncol 35, 2251, 2017			
KRAS Gene Variant	Effect			
c.35G>T; p.G12V (ex. 2)	Described in Thymic Carcinoma N. Girard et al, Clin Cancer Res 2009;15(22) November 15, 2009)			
KDR (VEGFR2) Gene Variant	Effect			
c.1416A>T; p.Q472H (ex. 11) rs1870377	This KDR variant Q472H represents a described Single Nucleotide Polymorphism (SNP) which was reported to be correlated with longer OS in patients with thymic tumor Berardi et al, Impact of VEGF, VEGFR, PDGFR, HIF and ERCC1 gene polymorphisms on thymic malignancies outcome after thymectomy Oncotarget 2015 Aug 7;6(22):19305-15.			
	DECINA ELENA			

1) Milan Radovich¹, Curtis R. Pickering², Ina Felau³, Gavin Ha⁴, Hailei Zhang⁴, Heejoon Jo⁵, Katherine A. Hoadley⁵, Pavana Anur⁶, Jiexin Zhang², Mike McLellan⁷, Reanne Bowlby⁸, Thomas Matthew⁹, Luda Danilova¹⁰, Apurva Hegde², Max Leiserson¹¹, Geetika Sethi¹², Charles Lu⁷, Michael Ryan², Xiaoping Su², Andrew D. Cherniack⁴, Gordon Robertson⁸, Rehan Akbani², Paul Spellman⁶, John Weinstein², Neil Hayes⁵, Ben Raphael¹¹, Tara Lichtenberg¹³, Kristen Leraas¹³Jean Claude Zenklusen³, <u>The Cancer Genome Atlas Network</u>, Junya Fujimoto², Cristovam Scapulatempo-Neto¹⁴, Andre Moreira¹⁵, David Hwang¹⁶, James Huang¹⁷, **Mirella Marino¹⁸**, Robert Korst¹⁹, Giuseppe Giaccone²⁰, Yesim Gokmen-Polar¹, Sunil Badve¹, Arun Rajan³, Phillipp Ströbel²¹, Nicolas Girard²², Ming Tsao²³, Alexander Marx²⁴, Anne Tsao², Patrick Loehrer¹ - The integrated genomic landscape of thymic epithelial tumors, Cancer Cell, 2018 Feb 12;33(2):244-258.e10. doi: 10.1016/j.ccell.2018.01.003. PMID: 29438696

