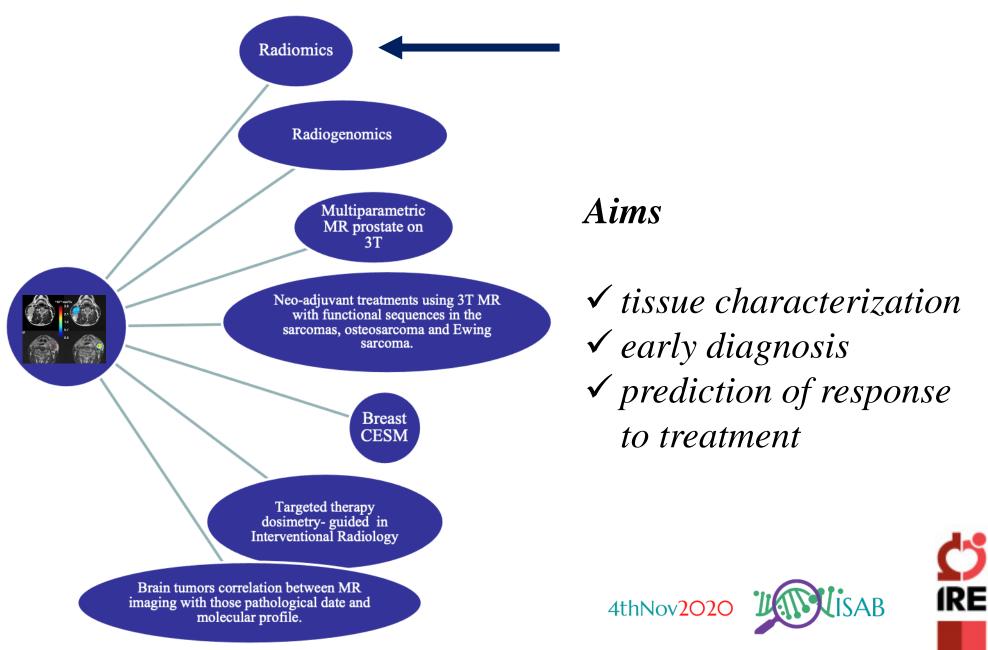
2° International Scientific Advisory Board WisAB November 4, 2020

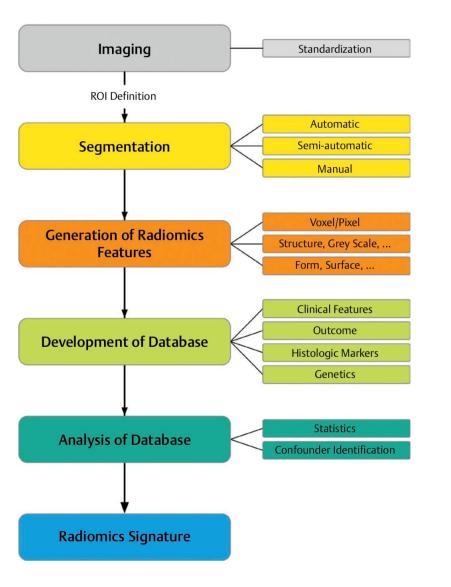


ISTITUTO DI RICOVERO E CURA A CARATTERE SCIENTIFICO

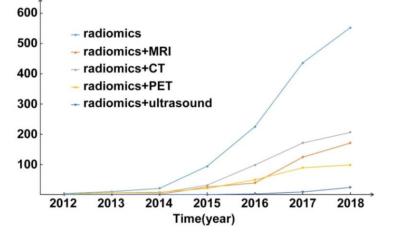
Radiomics

Antonello Vidiri Head of Radiology Unit IRCSS Regina Elena National Cancer Institute

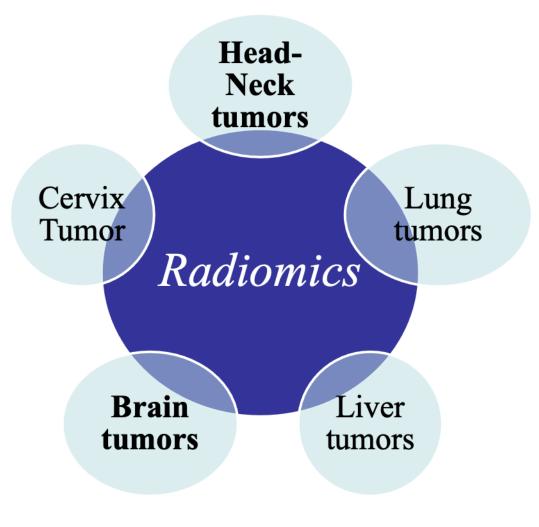
Specific topics of research of Radiology Unit


Radiomics: Images Are More than Pictures, They Are Data¹

...the extraction of a high number of quantitative features from medical images on regions of interest (ROIs)

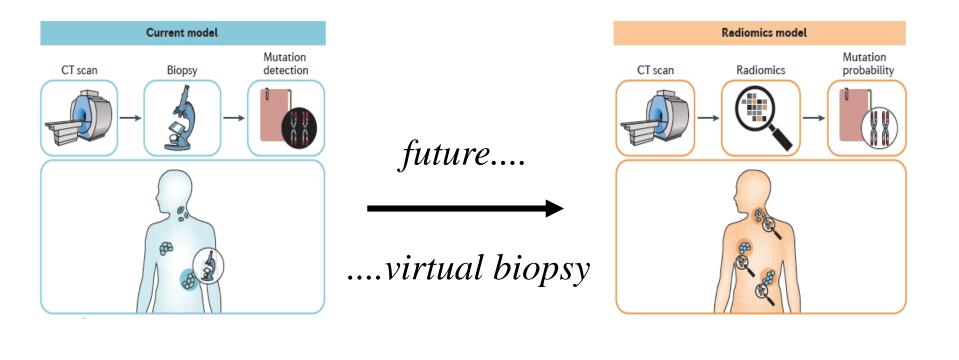

quantification of tumor phenotype

Radiomics – Work Flow


traditionally, radiomics was developed for extraction of features from a single modality (e.g. CT scans on patients with lung cancer)

4thNov2O2O

our topics of research


radiomics....could potentially aid in cancer:

✓ detection
 ✓ diagnosis
 ✓ assessment of prognosis
 ✓ prediction of response to treatment
 ✓ monitoring of disease status

4thNov2O2

.....a subset of radiomic data can be used to suggest gene expression or mutation status....this is important because radiomic data are derived from the entire tumor (or tumors) rather than from just a sample.

4thNov2O2O

Extraction of Semantic features

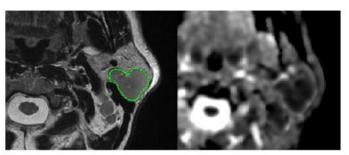
- dimension
- necrosis
- margin
- location

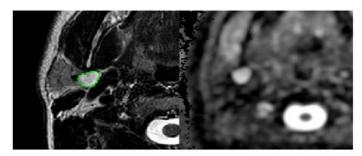
prediction of response to treatment

characterization

Extraction of Non Semantic features

4thNov2O20

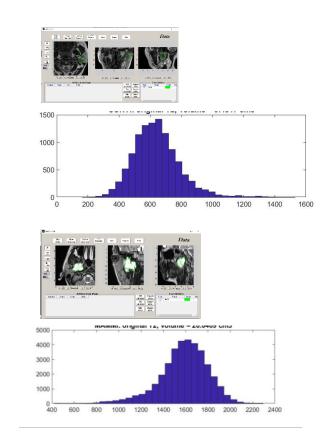

✓ shape
✓ histogram
✓ texture



Extraction of Semantic features

• margin

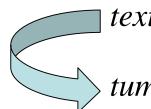
parotid lesions

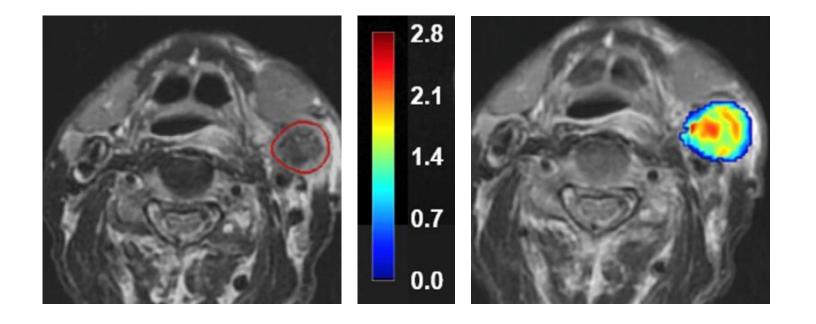


benign

malignant

Extraction of Non Semantic features


• histogram


Extraction of Non Semantic features

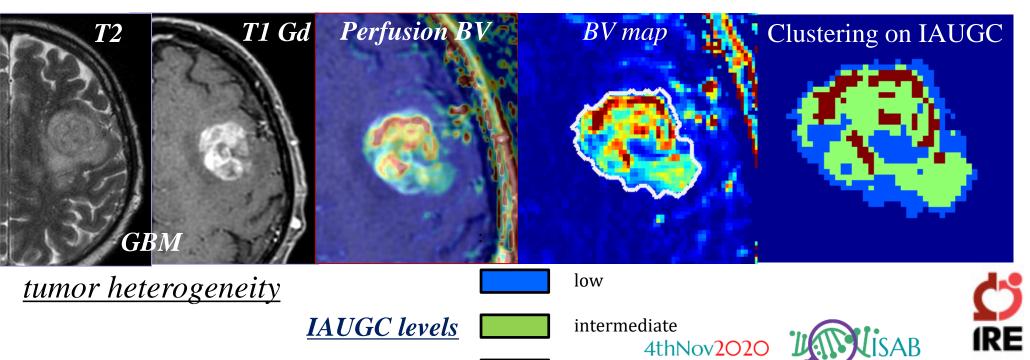
texture analysis is used to quantify

> tumor heterogeneity **____**

prediction of response

İSAB

4thNov2O2O


Extraction of Non Semantic features

tumor heterogeneity

prediction of response

Perfusion DCE with volumetric analysis

high

CT attenuation

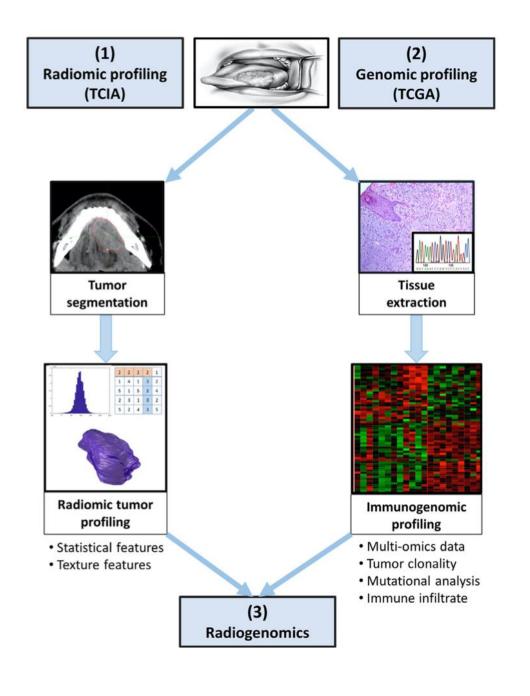
MR signal intensity

morpho	logycal	data
	0,	

non-morphologycal data <u>multiple</u> <u>surrogate</u> <u>biomarkers</u> <u>of tumor</u>

4thNov2O2O

<u>can be</u> <u>combined from</u> <u>clinical</u> <u>information to</u> <u>omics</u> <u>technologies</u>


SAB

 $\begin{array}{ccc} Diffusion & & cellularity \\ MR & & ADC - D - f - \\ D^* - K - Dk - \end{array}$ $\begin{array}{ccc} Perfusion & & vascularity \\ CT/MR & & vascularity \\ BV - BF - Ktrans - \end{array}$

Ve- Kep - Vp

Radiogenomics

field of research aimed at developing tools for noninvasive genotyping by identifying imaging biomarkers for genomic subtypes

4thNov2O2O

Radiomics is designed to be used in decision support of **precision medicine**

- ✓ uses standard of care images that are routinely acquired in clinical practice, it presents a cost-effective and highly feasible addition for supporting clinical decisions;
- ✓ *non-invasively* characterizes the overall tumor accounting for heterogeneity;
- ✓ *interrogates the entire tumor* allows the expression of microscopic genomic and proteomics patterns in terms of macroscopic image-based features;
- ✓ *produces* prognostic and/or predictive biomarker value derived from routine, standard of care imaging data;
- ✓ *allows* fast, low-cost, and repeatable means for longitudinal monitoring.

La radiologia medica https://doi.org/10.1007/s11547-018-0940-1

rontiers 🕈

Implementation

Alessandro Bozzao²

HEAD, NECK AND DENTAL RADIOLOGY

Cervical lymphadenopathy: can the histogram analysis of apparent diffusion coefficient help to differentiate between lymphoma and squamous cell carcinoma in patients with unknown clinical primary tumor?

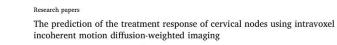
Antonello Vidiri^{1,7}© • Silvia Minosse² • Francesca Piludu³ • Raul Pellini⁴ • Giovanni Cristalli⁴ • Ramy Kayal¹ • Giorgio Carlino³ • Daniela Renzi⁵ • Renato Covello⁶ • Simona Marzi²

Research article

Intravoxel incoherent motion diffusion-weighted imaging for oropharyngeal squamous cell carcinoma: Correlation with human papillomavirus Status

Antonello Vidirf", Simona Marzi¹⁰", Emma Gangemi", Maria Benevolo^c, Francesca Rollo[°], Alessia Farnett[°], Laura Marucci¹, Filomena Spasiano⁶, Francesca Derati[°], Francesca Di Giuliano^{10,*}, Raul Pellini[°], Giuseppe Sanguineti[°] MRI-based Radiomics to Differentiate Benign and Malignant Parotid Tumors with External Validation.

Submitted AJNR


characterization

prediction to response to treatment

Comparison of Machine Learning Classifiers to Predict Patient Survival

and Genetics of GBM: Towards a Standardized Model for Clinical

Luca Pasquini^{1,2}, Antonio Napolitano³, Martina Lucignani¹, Emanuela Tagliente¹, Francesco Dellepiane², Maria Camilla Rossi-Espagnet^{2,4}, Matteo, Ritrovato⁵, Antonello Vidiri⁶, Veronica Villani⁷, Gluilo Ranazzi⁸, Antonella Stoppacciaro³, Andrea Romano², Alberto Di Napoli^{2,9},

Simona Marzi^{a,}, Francesca Piludu^b, Giuseppe Sanguineti^c, Laura Marucci^c, Alessia Farneti^c, Irene Terrenato^d, Raul Pellini^e, Maria Benevolo^f, Renato Covello^f, Antonello Vidiri^b

Contents lists available at ScienceDirect

European Journal of Radiology

journal homepage: www.elsevier.com/locate/ejrad

Original paper

I SEVIER

Characterization of cervical lymph-nodes using a multi-parametric and multi-modal approach for an early prediction of tumor response to chemo-radiotherapy

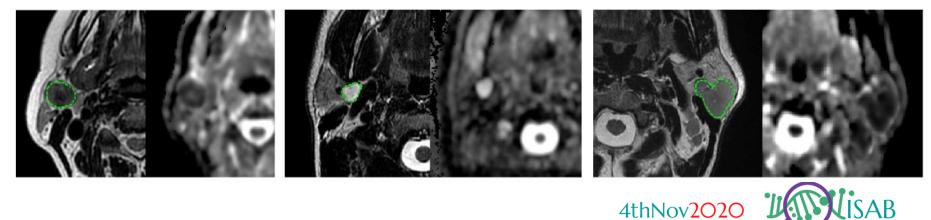
Elisa Scalco^{a,a,1}, Simona Marzi^{b,1}, Giuseppe Sanguineti^c, Antonello Vidiri^d, Giovanna Rizzo^a

MRI-based Radiomics to Differentiate between Benign and Malignant Parotid Tumors

with External Validation

Authors: Francesca Piludu¹, Simona Marzi², Marco Ravanelli³, Raul Pellini⁴, Renato Covello⁵, Irene

Terrenato⁶, Davide Farina³, Riccardo Campora³, Valentina Ferrazzoli¹, Antonello Vidiri¹


Submitted A.INR

Texture analysis - MRI:

 \checkmark morphological characteristics (type of margins and contrast enhancement)

- \checkmark T2 signal intensity
- ✓ ADC maps (DWI)

with external validation (Department of Radiology, University of Brescia)

Feature Family				
Morphological	IntensityHistogram	IntensityVolumeHistogram	GLGM	IntensityDirect
Volume	Mean	VolumeIntFract_10	JointMaximum	GlobalEntropy
ApproximateVolume	Variance	VolumeIntFract_90	JointAverage	GlobalMean
SurfaceArea	Skewness	IntensityVolFract_10	JointVariance	GlobalMedian
SurfaceToVolumeRatio	Kurtosis	IntensityVolFract_90	JointEntropy	InterQuartileRange
Compactness1	Median	VolumeFractionDiff	DifferenceAverage	Kurtosis
Compactness2	Min	IntensityFractDiff	DifferenceVariance	Skewness
SphericalDisproportion	10thPercentile	AreaUnderIVHCurve	DifferenceEntropy	0.25Quantile
Sphericity	90thPercentile		SumAverage	0.75Quantile
Asphericity	Max		SumVariance	
CentreOfMassShift	Mode		SumEntropy	
Maximum3DDiameter	InterQuartileRange		AngularSecondMoment	
MajorAxisLength	Range		Contrast	
MinorAxisLength	MeanAbsoluteDeviation		Dissimilarity	
•••				

ÍRE

,

LİSAB

4thNov2O2O

MRI-based Radiomics to Differentiate between Benign and Malignant Parotid Tumors

with External Validation

Authors: Francesca Piludu¹, Simona Marzi², Marco Ravanelli³, Raul Pellini⁴, Renato Covello⁵, Irene

Feature Family

Morphological	IntensityHistogram	Intensity Volume Histogram	GLGM	IntensityDirect
Volume	Mean	VolumeIntFract_10	JointMaximum	GlobalEntropy
ApproximateVolume	Variance	VolumeIntFract_90	JointAverage	GlobalMean
SurfaceArea	Skewness	IntensityVolFract_10	JointVariance	GlobalMedian
SurfaceToVolumeRatio	Kurtosis	IntensityVolFract_90	JointEntropy	InterQuartileRange
Compactness1	Median	VolumeFractionDiff	DifferenceAverage	Kurtosis
Compactness2	Min	IntensityFractDiff	DifferenceVariance	Skewness
SphericalDisproportion	10thPercentile	AreaUnderIVHCurve	DifferenceEntropy	0.25Quantile
Sphericity	90thPercentile		SumAverage	0.75Quantile
Asphericity	Max		SumVariance	
CentreOfMassShift	Mode		SumEntropy	
Maximum3DDiameter	InterQuartileRange		AngularSecondMoment	
MajorAxisLength	Range		Contrast	
MinorAxisLength	MeanAbsoluteDeviation		Dissimilarity	

.... but only 4 features have been selected to build the models using statistical tests and / or dedicated algorithms

4thNov2O20

MRI-based Radiomics to Differentiate between Benign and Malignant Parotid Tumors

with External Validation

Authors: Francesca Piludu¹, Simona Marzi², Marco Ravanelli³, Raul Pellini⁴, Renato Covello⁵, Irene

End-point	Selected Features	Accuracy(%)	Sensitivity(%)	Specificity(%)	PPV(%)	NPV(%)
Warthin's vs Malignant tumors	<i>ADC P25 Volume Density AEE</i> Margins Gd	86.7 [73.2, 95.0]	87.5 [71.0, 96.5]	84.6 [54.5,98.1]	93.3 [79.5, 98.1]	73.3 [51.7, 87.6]
Benign* vs Warthin's tumors	ADC P25 Volume Density AEE MinimumHistogramGradient Gd	91.9 [78.1, 98.3]	84.6 [54.6, 98.1]	95.8 [78.9 <i>,</i> 99.9]	91.7 [61.4, 98.7]	92.0 [76.2, 97.6]
Benign* vs Malignant tumors	ADC P25 T2 P10 Gd Margins	80.4 [67.6, 89.8]	84.4 [67.2 <i>,</i> 94.7]	75.0 [53.3, 90.2]	81.8 [68.9, 90.1]	78.2 [60.9, 89.3]

Table. Predictive Performance of the three models on the training cohort

SAB

4thNov2O2

MRI-based Radiomics to Differentiate between Benign and Malignant Parotid Tumors

with External Validation

Authors: Francesca Piludu¹, Simona Marzi², Marco Ravanelli³, Raul Pellini⁴, Renato Covello⁵, Irene

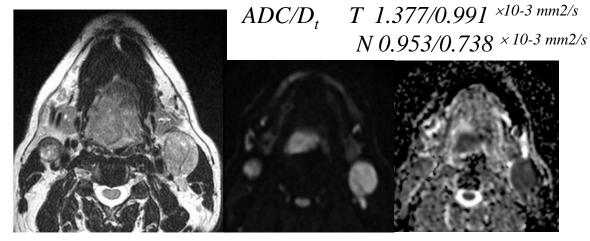
End-point	Selected Features	Accuracy(%)	Sensitivity(%)	Specificity(%)	PPV(%)	NPV(%)
Warthin's vs Malignant tumors	<i>ADC P25 Volume Density AEE</i> Margins Gd	77.8 [57.7,91.4]	90.0 [68.3,98.8]	42.9 [9.9,81.6]	81.0 [68.6,89.2]	60 [23.8, 87.8]
Benign* vs Warthin's tumors	ADC P25 Volume Density AEE MinimumHistogramGradient Gd	91.7 [73.0,99.0]	85.7 [42.1,99.6]	94.1 [71.3, 99.9]	85.7 [46.7,97.6]	94.1 [72.2, 99.9]
Benign* vs Malignant tumors	ADC P25 T2 P10 Gd Margins	80.4 [67.6, 89.8]	84.4 [67.2 <i>,</i> 94.7]	75.0 [53.3, 90.2]	81.8 [68.9, 90.1]	78.2 [60.9, 89.3]

Table. Predictive Performance of the three models on the validation cohort

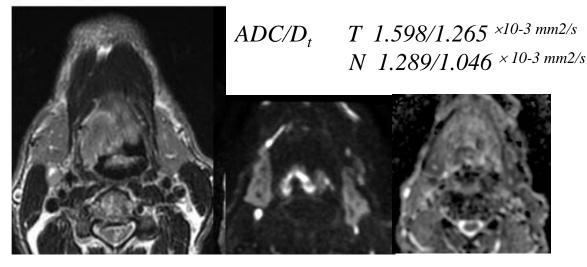
MRI-based Radiomics to Differentiate between Benign and Malignant Parotid Tumors

with External Validation

Authors: Francesca Piludu¹, Simona Marzi², Marco Ravanelli³, Raul Pellini⁴, Renato Covello⁵, Irene


....with similar performance

SAB


4thNov2O2

MRI for Prediction HPV status in Oropharyngeal SCC

lower ADC HPV+

higher ADC HPV-

Research article

Intravoxel incoherent motion diffusion-weighted imaging for oropharyngeal squamous cell carcinoma: Correlation with human papillomavirus Status

Antonello Vidiri^a, Simona Marzi^{ba}, Fanma Gangemi^a, Maria Benevolo^c, Francesca Rollo^c, Alessia Farnett^{ia}, Luara Marucci^a, Filomena Spasiano^a, Francesca Sperati^a, Francesca Di Giuliano^{a, r}, Raul Pellini^a, Giuseppe Sanguinett^{ia}

the best predictive model for HPV positivity was obtained combining ✓ alcohol intake ✓ smoke habits

 $\checkmark D_t$ values of PTs

accuracy = 80.8%

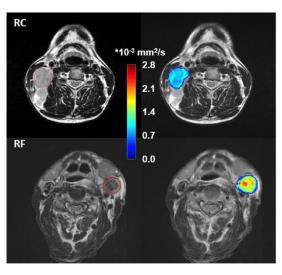
4thNov2O2O

MRI for Prediction of tumor response to CHT-RT in head-neck nodes

Contents lists available at ScienceDirect Physica Medica

journal homepage: http://www.physicamedica.com

Original paper

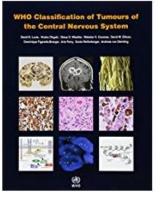

Characterization of cervical lymph-nodes using a multi-parametric and multi-modal approach for an early prediction of tumor response to chemo-radiotherapy

Elisa Scalco^{a,*,1}, Simona Marzi^{b,1}, Giuseppe Sanguineti^c, Antonello Vidiri^d, Giovanna Rizzo^a

the image-based analysis was performed on \blacktriangleright the planning CT ► on T2w-MRI

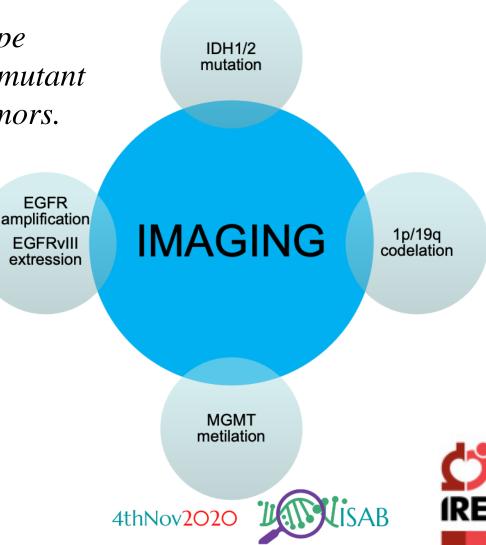
Characteristic	No.
Patient number	30
Age (years)	
Median (range)	58 (28-82)
Sex (M/F)	27/3
Primary tumor site	
Oropharynx	12 (40.0%)
Nasopharynx	11 (36.7%)
Hypopharynx	5 (16.7%)
Larynx	1 (3.3%)
Unknown	1 (3.3%)
T stage	
T1	6 (20%)
T2	11 (36.7%)
T3	5 (16.7%)
T4	7 (23.3%)
TO	1 (3.3%)
N stage	
N1	6 (20%)
N2a	4 (13.3%)
N2b	6 (20%)
N2c	8 (26.6%)
N3	6 (20%)
LN volume (cm ³)	
Median (range)	4 (0.8-44)

> DW-MRI acquired before CRT (MRI 1) and at mid-treatment (MRI 2)

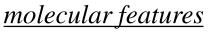

Texture analysis

pre-treatment features showed higher predictive power than mid-CRT features, the ADC having the highest accuracy (80%); CTbased indices were found not predictive. When ADC was combined with Texture Analisys on T2, the classification performance increased (accuracy = 82.8%)

4thNov2O2


correlation between imaging - molecular date – genetic alterations

in 2016 WHO grade II and III infiltrating gliomas


 astrocytoma IDH-mutant
 astrocytoma IDH-wild type
 oligodendroglioma IDH-mutant 1p/19q codeleted tumors.

genomic alterations in gliomas are associated with a number of radiographic features on MRI

correlation between imaging - molecular date – genetic alterations

GLIOMA PROJECT

correlation

- ✓ <u>IDH mutation,</u>
- ✓ <u>MGMT</u>
- ✓ <u>Ki-67</u>
- ✓ <u>EGFR</u>

- MRI...pre treatment
 - morphologycal imaging (site, signal intensity, margin, contrast enhancement, mismacth between T2 and FLAIR)
 - non morphological imaging (Diffusion and Perfusion)

frontiers

Comparison of Machine Learning Classifiers to Predict Patient Survival and Genetics of GBM: Towards a Standardized Model for Clinical Implementation

Luca Pasquini^{1,2}, Antonio Napolitano³, Martina Lucignani¹, Emanuela Tagliente³, Francesco Dellepiane⁴, Maria Camilla Rossi-Espagnet^{1,4}, Matteo, Ritrovato³, Antonello Vidiri⁵, Veronica Villani⁷, Giulio Ranazzi⁸, Antonella Stoppacciaro⁸, Andrea Romano², Alberto Di Napoli^{2,9}, Alessandro Bozzao²

¹Neuroradiology Unit, Radiology Department, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA,

²Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, Rome 00189, <u>Italy</u>.

¹Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4, Rome 00165, Italy.
¹Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza di

<sup>Treuroradiology Unit, imaging Department, Bambino Gesu Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4, Rome Oll65, Italy.
²Unit of HTA, Biomedical Technology Risk Manager, Bambino Gesù Children's Hospital,</sup>

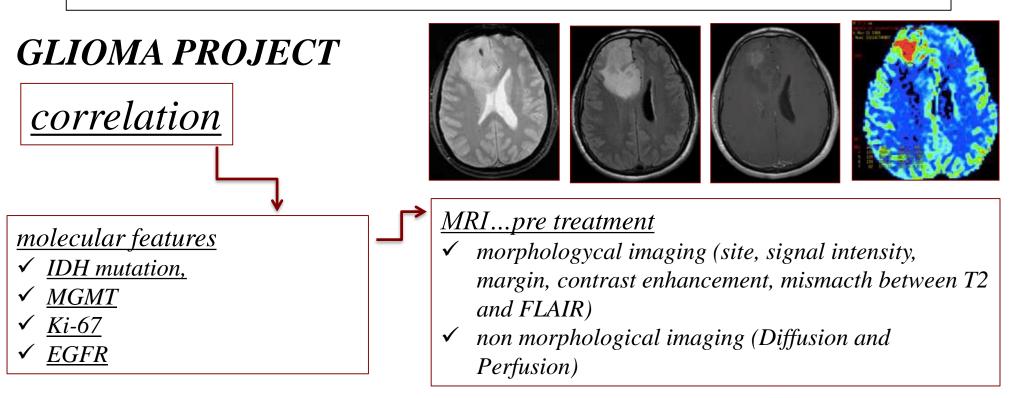
Function of HTA, Biomedical Technology Risk Manager, Bambino Gesu Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4, Rome 00165, Italy.
Radiology and Diagnostic Imaging Department, Regina Elena National Cancer Institute, IRCCS, Via

*Radiology and Diagnostic Imaging Department, Regina Elena National Cancer Institute, IRCCS, Via Elio <u>Chianesi</u> 53, Rome 00144, Italy.

⁷Neuro-Oncology Unit, Regina Elena National Cancer Institute, IRCCS, Via Elio <u>Chianesi</u> 53, Rome 00144, Italy.

⁸Department of Clinical and Molecular Medicine, Surgical Pathology Units , <u>Sant'Andrea</u> Hospital, La Sapienza University, Via di <u>Grottarossa</u> 1035, Rome 00189, Italy.

Radiology Department, Castelli Romani Hospital, Via Nettunense Km 11.5, Ariccia 00040, Rome, Italy.


multicentric study

156 adult patients with pathologic diagnosis of GBM

4thNov2O2C

correlation between imaging - molecular date – genetic alterations

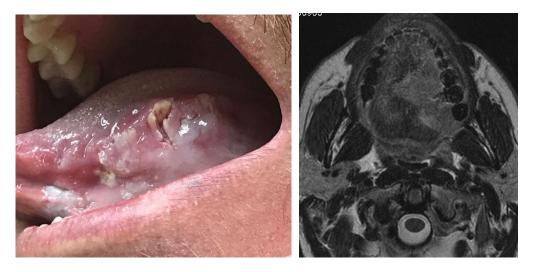
accuracy

- ✓ OS (74.5%) textural features from FLAIR /T2 / necrosis
- ✓ IDH mutation (98%) **rCBV on perfusion**
- ✓ MGMT methylation (81.5%) FLAIR sequences
- ✓ Ki-67 expression (95%) diffusion ADC
- ✓ EGFR amplification (93%) **rCBV on perfusion** / **T2 sequences**

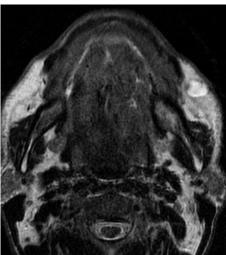
logy Unit, Regina Elena National Cancer Institute, IRCC of Clinical and Molecular Medicine, Surgical Pathology University, Via di Gruttanssa 1035, Rome 00189, Italy

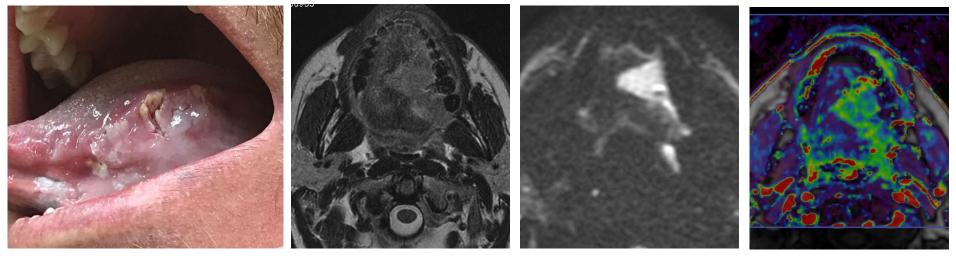
Comparison of Machine Learning Classifiers to Predict Patient Surviva and Genetics of GBM: Towards a Standardized Model for Clinica

frontiers

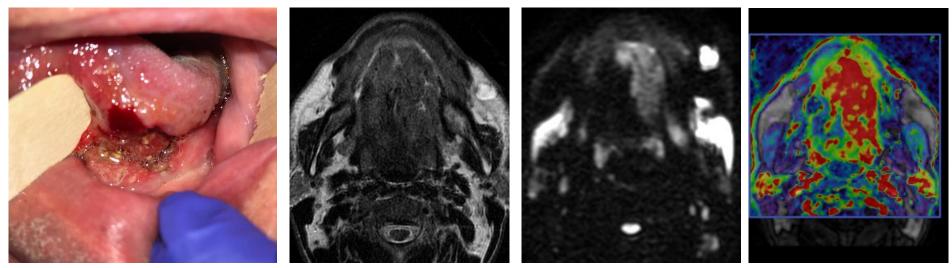

4thNov2O2C

Ongoing studies

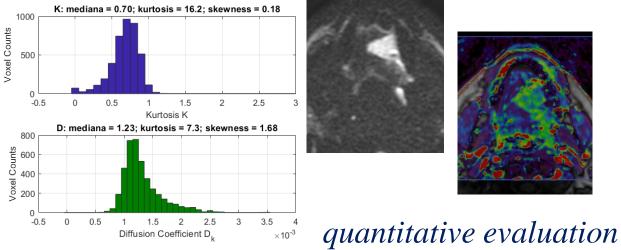

- ✓ correlation between radiomics features in patients with lung tumors underwent surgery and specific driver mutational status
- ✓ correlation between the parameters identified by perfusion imaging (neo-vascularization) and diffusion (cellularity and stroma) with those of the immunohistochemistry and digital pathology, RNASEQ, and with the immunoprofiling of the cells of the immune system in the periphery in head and neck tumors
- ✓ radiomics features in cervical cancer underwent radiochemiotherapy and overall survival
- ✓ radiomics features in *liver* metastases underwent chemiotherapy and surgery



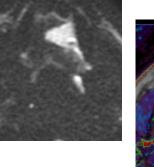
Tongue SCCMRIT2

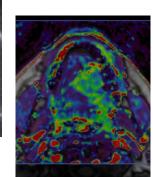


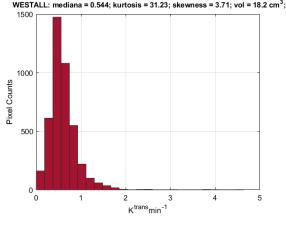
Tongue SCC MRI

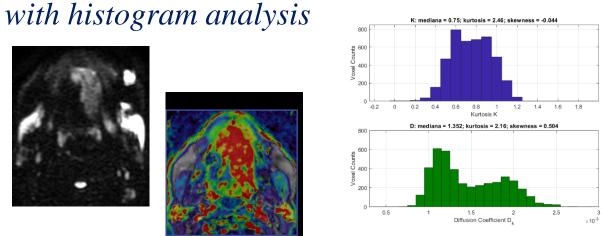


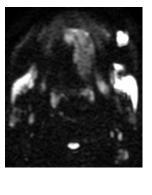
diffusion and perfusion MR related to tissue architecture 4thNov2O2O

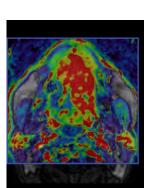





of whole tumor

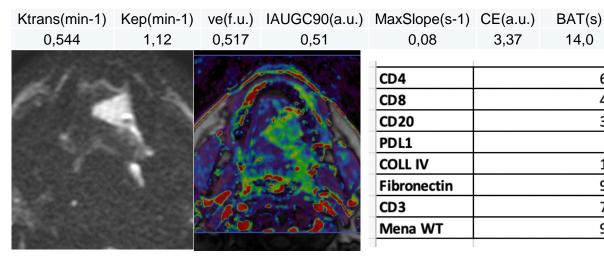

diffusion


perfusion



K: mediana = 0.75; kurtosis = 2.46; skewness = -0.044 800 <u>ආ</u> 600 /oxel Cou 400 200 0 -0.2 0.2 0.6 0.8 1.6 1.8 0 0.4 1.2 1.4 Kurtosis K D: mediana = 1.352; kurtosis = 2.16; skewness = 0.504 800 600 වී ₄₀₀ Voxel 200 0.5 1 1.5 2.5

Diffusion Coefficient D



diffusion and perfusion MR related to tissue architecture 4thNov2O2O

×10⁻³

<u>himmunoistochemical</u>

Vol(cm3)

18,3

Immuno monitoring Belinda Palermo Maria Angela Panetta

we are working to correlate.....

what implications ?

K

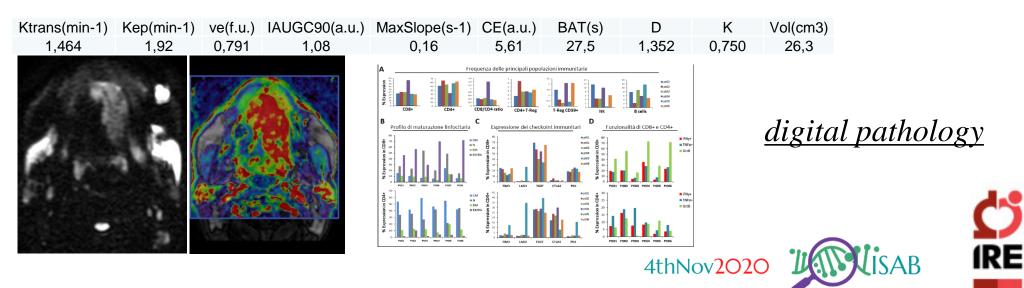
0,700

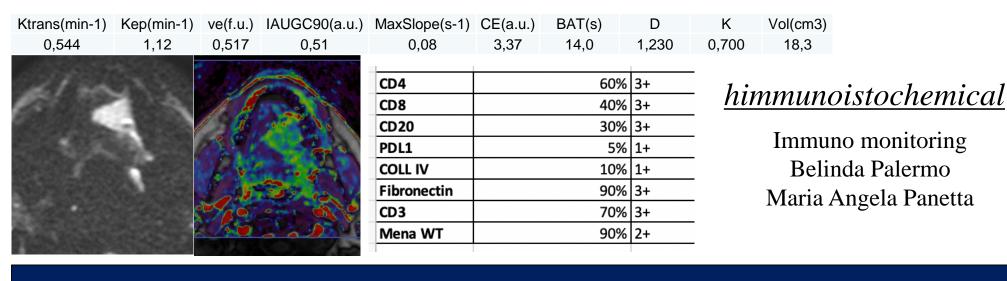
D

1,230

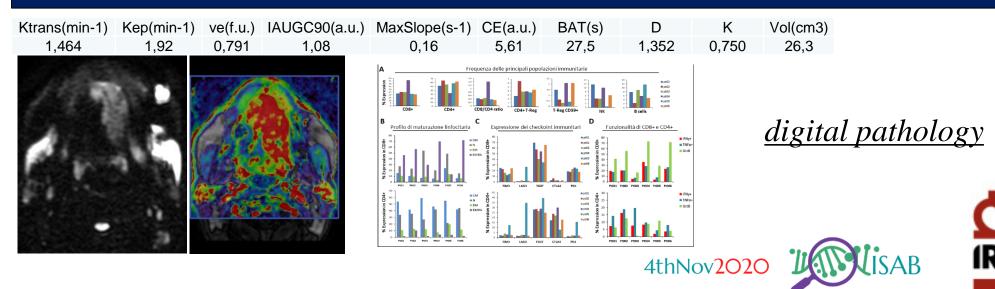
60% 3+

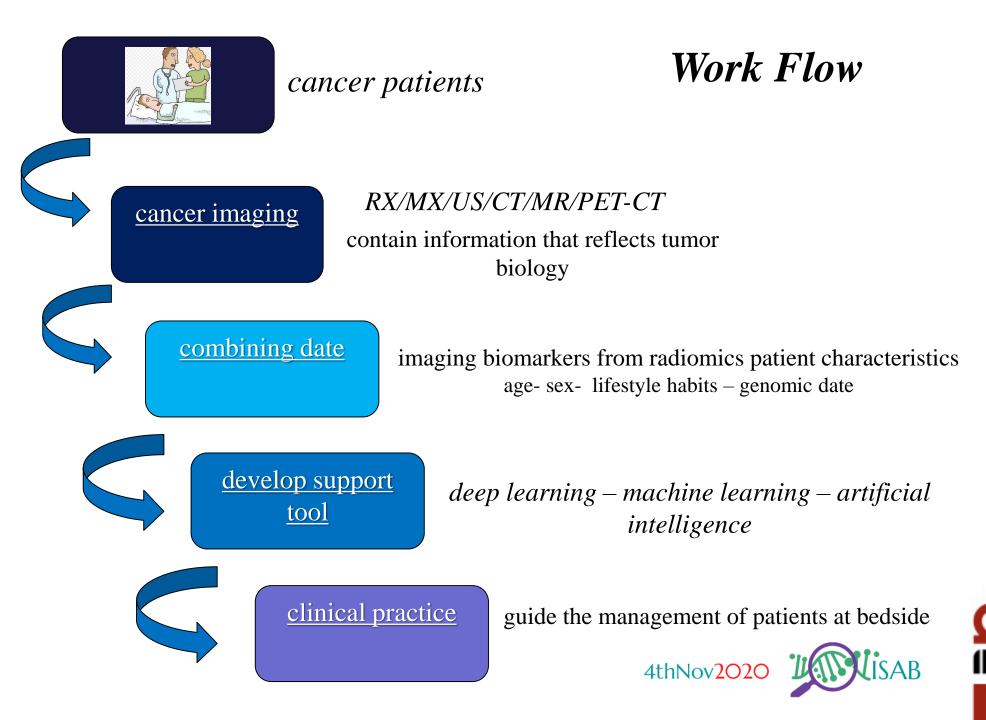
40% 3+


30% 3+

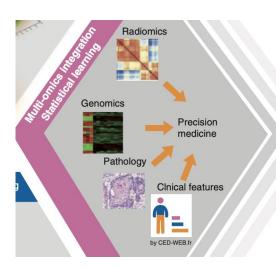

5% 1+

10% 1+ 90% 3+


70% 3+


90% 2+

....the possibility to identify with radiogenomic approach a panel of baseline imaging biomarkers before surgery that can be used to define prognostic and diagnostic markers



CONCLUSION

Radiomics has

- \checkmark immense potential to improve knowledge in tumor biology
- ✓ allows tumor monitoring across time, with images being routinely acquired throughout the course of treatment
- ✓ imaging biomarkers may be used to cancer detection, diagnosis, choice of therapeutic strategy, prognosis inference, prediction of response.

still a long way to go, like any challenge

4thNov2O2C

to my Unit Medical Physics Laboratory

UNIT of Head Neck Surgery UNIT of Radiotherapy UNIT of Tumor Immunology and Immunotherapy UOSD Biostatistics, Bioinformatics and Clinical Trial Center UOSD SAFU UNIT of Pathology UNIT of Neuroncology

....and to you for our attention

