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SUMMARY

(Tinical oncology is experiencing rapid growth in data that are collected to enhance cancer care.
With recent advances in the field of Artificial Intelligence (Al), there is now a computational basis
to integrate and synthesize this growing body of multi-dimensional data, deduce patterns, and
predict outcomes to improve shared patient and clinician decision-making, While there is high

1 —= potential, significant challenges remain. In this perspective, we propose a pathway of clinical,
cancer care touchpoints for narrow-task Al applications and review a selection of applications. We
describe the challenges faced in the clinical translation of Al and propose solutions. We also
suggest paths forward in weaving Al into individualized patient care, with an emphasis on clinical
_validity, utility, and usabilitv. By illuminating these issues in the context of current Al applications
for clinical oncology, we hope to help advance meaningful investigations that will ultimately
translate to real-world clinical use.

INTRODUCTION

Over the last decade, there has been a resurgence of interest for artificial intelligence (Al)
applications in medicine. This is driven by the advent of deep leaming algorithms,
computing hardware advances, and the exponential growth of data that are being generated
and used for clinical decision making (Esteva et al,, 2019; Kann et al., 2020a; LeCun ¢t al.,
2015). Oncology is particularly poised for transformative changes brought on by Al given
the proven advantages of individualized care and recognition that tumors and their response
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rates differ vastly from person to person (Marusyk et al., 2012; Schiisky, 2010). In oncology.
much like other medica! fields, the overarching goal is to increase quantity and quality of
life, which, from a practical standpoint, entails choosing the management strategy that
optimizes cancer control and minimizes toxicity.

™ As multidimensional data is increasingly being generated in routine care, Al can support
clinicians to form an individualized view of a patient along their care pathway and
ultimately guide clinical decisions. These decisions rely on the incorporation of disparate,
complex datastreams, including clinical presentation, patient history, tumor pathology and
genomics, as well as medical imaging, and marrying these data to the findings of an ever-
growing body of scientific literature. Furthermore, these datastreams are in a constant state
of flux over the course of a patient’s trajectory. With the emergence of Al, specifically deep
Jearning (T.eCun et al., 2015), there is now a computational basis to integrate and synthesize

__these data (o predict where the patient’s care path is headed, and ultimately improve
management decisions.

While there is much reason to be hopeful, numerous challenges remain to the successful
integration of Al in clinical oncology. In analyzing these challenges, it is critical to view the
promise, success, and failure of Al not only in generalities, but on a clinical case-by-case

' basis. Not every cancer problem is a nail to AI's hammer; its value is not universal, but
inextricably linked to the clinical use case (Maddox et al., 2019). The current evidence
suggests that clinical translation of the vast majority of published, high-performing Al
algorithms remains in a nascent stage (Nagendran et al., 2020). Furthermore, we posit that
the imminent value of Al in clinical oncology is in the aggregation of narrow task-specific,
clinically validated and meaningful applications at clinical “touchpoints” along the cancer
care pathway, rather than general, all-purpose Al for end-to-end decision-making, As the
global cancer incidence increases and the financial toxicity of cancer care is increasingly
recognized, many socicties are moving towards value-based care systems (Porter, 2009;
Yousuf Zafar, 2016). With development of these systems, there will be increasing incentive
for the adoption of data-driven tools - potentially powered by Al - that can lead to reduced
patient morbidity. mortality, and healthcare costs (Kuznar, 2015).

Here, we will describe the key concepts of Al in clinical oncology and review a selection of
Al applications in oncology from the lens of a patient moving through clinical touchpoints
along the cancer care path. We will therein describe the challenges faced in the clinical
translation of Al and propose solutions, and finally suggest paths forward in weaving Al into
individualized patient cancer care. By illuminating these issues in the context of current Al
applications for clinical oncology, we hope to provide concepts to help drive meaningful
investigations that will ultimately translate to real-world clinical use.

Artificial Intelligence: from shallow to deep learning

The concept of Al, formalized in the 1950°s, was originally defined as the ability of a
machine to perform a task normally associated with human performance (Russell and Haller,
2003). Within this field, the concept of machine leamning was born, which refers to an
algorithm’s ability to learn data and perform tasks without explicit programming (Samuel,
1959). Machine learning research has led to development and use of a number of “shallow”
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learning algorithms, including earlier generalized linear models like logistic regression,
Bayesian algorithms, decision-trees, and ensemble methods (Bhattacharyya et al., 2019;
Richens et al., 2020). In the simplest of these models, such as logistic regression, input
variables arc assumed to be independent of one another, and individual weights are learned
for each variable to determine a decision boundary that optimally separates classes of
labelled data. More advanced shallow leaming algorithms, such as random forests, allow for
the characterization and weighting of input variable combinations and relationships, thus
learning decision boundaries that can fit more complex data.

Deep learning is a newer subset of machine leaming, which has the ability to learn patterns
from raw, unstructured input data by incorporating layered neural networks (LeCun et al.,
2013). In supervised learning, which represents the most common form within medical Al a
neural network will generate a prediction from this input data and compare it to a “ground
truth” annotation. This discrepancy between prediction and ground truth is encapsulated in a
loss function which is then propagated back through the neural network, and over numerous
cycles, the model is optimized to minimize this loss function.

For the purpose of clinical application, we can view Al as a spectrum of algorithms, the
utility of which are inextricably linked to the characteristics of the task under investigation.
Thorough understanding of the data stream is necessary to choose, develop, and optimize an
algorithm, In general, deep learning networks offer nearly limitless flexibility in input,
output, architectural and parameter design, and thus are able to fit vast quantities of
heterogeneous and unstructured data never before possible (Esteva et al., 2017). Specifically,
deep learning has a high propensity to learn non-linear and high-dimensional relationships in
multi-modal data including time series data, pixel-by-pixel imaging data, unstructured text
data, audio/video data, or biometric data. Data with significant spatial and temporal
heterogeneity are particularly well-suited for DLNNs (Zhong et al., 2019). On the other
hand, this power comes at the expense of limited interpretability and a proclivity for
overfitting data if not trained on a large enough dataset (Zhu et al., 2015). While traditional
machine learning and statistical modeling can perform quite well at certain predictive tasks,
they generally struggle to fit unprocessed, unstructured, and high dimensional data
compared to deep leamning. Therefore, despite its limitations, deep learning has opened the
door to big data analysis in oncology and promises to advance clinical oncology, so long as
certain pitfalls in development and implementation can be overcome.

Cancer care as a mathematical optimization problem

To appreciate the promise surrounding Al applications for clinical oncology, it is essential to
incorporate a mathematical lens to the patient care path through cancer risk prediction,
screening, diagnosis and treatment. From the Al perspective, the patient path is an
optimization problem, wherein heterogeneous data streams converge as inputs into a
mathematical scaffold (i.e. machine learning algorithms) (Figure 1). This scaffold is
iteratively adjusted during training until the desired output can be reliably predicted and an
action can be taken. In this setting, an ever-growing list of inputs include patient clinical
presentation, past medical history, genomics, imaging, and biometrics, and can be roughly
subdivided as tumor, host, or environmental factors. The complexity of the algorithms is
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often driven by the quantity, heterogeneity, and dimensionality of such data. Outputs are
centered, most broadly, on increasing survival and/or quality of life, but are often evaluated
by necessity as a series of more granular surrogate endpoints.

Datastreams for clinical oncology

The arc of research in oncology, increasing data generation, and advances in computational
technology have collectively resulted in a frameshift from low-dimensional to increasingly
high-dimensional patient data representation. Earlier data and computational limitations
often necessitated reducing unstructured patient data (e.g. medical images and biopsies) into
a set of human-digestible discrete measures of disease extent. One notable example of such
simplification lies within cancer staging systems, most prominently the AJCC TNM
classification (Amin et al., 2017). In 1977, with only three inputs commonly available -
tumor size, nodal involvement, and presence of metastasis - the first edition AJCC TNM
staging became standard of care for risk-stratification and decision-management in
oncology. Over the subsequent decades, with the incorporation of other discrete data points,
predictive nomograms could be generated using simple lincar models, which have found
practical use in certain situations (Bari et al., 2010; Creutzberg ¢t al., 2015; Mittendorf et al,,
2012; Stephenson et al., 2007). More recently, improved methods to extract and analyze
existing data coupled with new data streams and a growing understanding of inter- and intra-
tumoral heterogeneity, have all led to the development of increasingly complex and specific
stratification models. Key examples of novel data streams introduced over the past two
decades are the Electronic Health Record, The Cancer Genome Atlas (Weinstein et al,,
2013), The Cancer Imaging Archive (Clark et al., 2013), and the Project GENIE initiative
(AACR Project GENIE Consortium, 2017). Key examples of advanced risk-stratification
and prediction models are the prostate cancer Decipher score (Erho et al., 2013) and breast
cancer OncotypeDx score (Paik et al,, 2004), which utilize discrete genomic data and
shallow machine learning algorithms to form clinically validated predictive models. Useful
oncology datastreams, roughly following historical order of availability, include: clinical
presentation, tumor stage, histopathology, qualitative imaging, tumor genomics, patient
genomics, quantitative imaging, liguid biopsies, electronic medical record mining, wearable
devices, and digital behavior (Figure 1). Furthermore, as a patient moves along the cancer
care pathway, the number of influxfig, intra-patient datastreams grows. With cach step
through the pathway, new data is generated out of the pathway with the potential to be
reincorporated at a later time back into the pathway (Figure 2).

s our biological knowledge base and datastreams grow in clinical oncology, machine
learning algorithms can be deployed to learn patterns that apply to more and more precise
patient groups and generate predictions to guide treatment for the next, “unseen” patient. As
we assimilate more data, op&imal cancer care, i.¢. the care that results in the best survival and
quality of life for a patient, inevitably becomes precision care, assuming we have the
necessary tools to fully utilize the data, Here, at this intersection of data complexity and
precision care in clinical oncology, is where the promise of Al has been so tantalizing,

though as of yet, unfulfilled.
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Al Applications and Touchpoints along the Clinical Oncology Care Path

We propose that Al development for clinical oncology should be approached from patient
and clinician perspectives across the following cancer care touchpoints: Risk Prediction,
Screening, Diagnosis, Prognosis, Initial Treatment, Response Assessment, Subsequent
Treatment, and Follow-up (Figure 2). The clinical touchpoint pathway shares features with
the “cancer continuum,” (Chambers et al., 2018) though it consists of more granular, patient
and clinician decision-oriented points of contact for Al to add clinical benefit. Each of these
touchpoints involves a critical series of decisions for oncologists and patients to make and
yields a use-case for Al to provide an incremental benefit. Furthermore, touchpoint details
will vary by cancer subtype. Within these touchpoints, ideal Al use-cases are ones with
significant unmet need and large available datasets. In the context of supervised machine
learning, these datasets require robust and accurate annotation to form a reliable “ground-
truth™ on which the Al system can train.

Narrow tasks with high reliability

As clinical oncology datastreams increase in complexity, the tools needed to discern patterns
from these data are necessarily more complex, as well. Amidst this flood of heterogeneous
intra-patient data, there is a relative dearth of inter-patient data which is needed to train large
scale models. Therefore, to accumulate the training data required for generalizable models, it
will likely be more fruitful to target and evaluate individual Al models towards specific
datastreams at a particular touchpoint along the care pathway.

It is tempting to think that, given the increasing data streams that encompass multiple patient
characteristics and outcomes, one could develop a unifying, dynamic model to synthesize
and drive precision oncology, developing a “virtual-guide™ of sorts for the oncologist and
patient (Topol, 2019). Analogies are often made to transformative technologies, such as self-
driving cars and social media recommendations that leverage powerful neural networks on
top of streams composed of billions of incoming data points, to predict real-time outcomes
and continually improve performance. While in theory, this strategy could one day be
deployed in a clinical setting, there are vast differences between these domains that question
whether or not we should or even couid pussue this strategy currently. One of the most
glaring differences between the healthcare and technology domains, in terms of Al
application, is the striking difference in data quality and quantity. While there has been a sea
change in the collection of data within the healthcare field over the past decade, driven by
the adoption of the Electronic Health Record, datasets still remain virtually siloed, intensely
regulated, and, particularly in cancer care, much too small to leverage the most powerful Al
algorithms available (Bi et al., 2019; Kelly et al., 2019). One of the most high-profile of
these endeavors, IBM's Watson Oncology project, has attempted to develop a broad
prediction machine to guide cancer care, but has been limited by suboptimal concordance
with human oncologists’ recommendations and subsequent distrust (Gyawali, 2018; Lee et
al., 2018; Somashekhar et al., 2017).

As our biological perspective has evolved, we now know that cancer is made up of
4 thousands of distinct entities that will follow different trajectories, each with different
treatment strategies (Dagogo-Jack and Shaw, 2018; Polyak, 2011), In computational model
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development, there is thought to be a bare minimum number of data samples required for
each model input feature (Mitsa, 2019). As we seek to make recommendations more and

4 more bespoke, it becomes more challenging to accrue the quantity of training data necessary
to leverage complex algorithms, Fortunately, this data gap in healthcare is well-recognized,
and a number of initiatives have been proposed to streamline and unify data collection
(Wilkinson et al., 2016). However, given the innately heterogencous, fragmented, and private
nature of healtheare data, we in the oncology field may never achieve a level of data
robustness enjoyed by other technology sectors. Therefore, strategics are necessary to
mitigate the data problem, such as proper algorithm selection, model architecture
improvements, data preprocessing, and data augmentation techniques. Above all, thoughtful
selection of narrow use cases across cancer care touchpoints is paramount in order to yield
clinical impact.

Onee rigorously tested, these narrow-Als could then be aggregated over the course of a
patient’s care to provide a measurable, clinical benefit. This sort of Al-driven dimensionality
reduction of a patient’s feature space allows for optimizing the development process and
exporting of quality Al applications in the present environment of siloed data, expertise, and
infrastructure. As of writing, there are approximately 20 FDA-approved Al applications
targeted specifically for clinical oncology, and each of these performs a narrow task,
utilizing a single data stream at a specific cancer care touchpoint (Benjamens et al., 2020;
Hamamoto et al., 2020; Topol, 2019) (Table 1). We hypothesize that the future of Al in
oncology will continue to consist of an aggregation of rigorously evaluated, narrow-task
models, each one providing small, incremental benefits for patient guantity and quality of
life. In the next sections, we will review select Al applications that have excelled with this
narrow-task approach.

Narrow-task Al examples across the clinical oncology touchpoints

T1. Risk Prediction and Prevention.—Given the burden to people and healthcare
systems of cancer diagnosis and management, there is a significant opportunity for Al to
help predict an individual's risk of developing cancer, and thereby target screening and early
interventions effectively and efficiently. In a mathematical sense, the patient’s entire
personal history up until diagnosis makes up a vast and extremely heterogeneous datastream
to be evaluated, positioning deep learning to have an impact. This is evidenced by the steady
development of tools that leverage computational modeling to refine cancer risk. In the past
few years, several DL algorithms have been investigated to further tailor risk prediction
beyond traditional models. Some of these algorithms utilize novel datastreams that were not
available until recently: satellite imagery (Bibault et al., 2020), internet search history
(White and Horvitz, 2017), and wearable devices (Beg et al., 2017). Others maximize the
utility of pre-existing datastreams, including patient genomics, routine imaging, unstructured
lealth record data, and deeper family history to improve predictions (Ming et al., 2020).

T2. Screening.—Cancer screening involves the input and evaluation of data at a distinct
time-point to determine whether or not additional diagnostic testing and procedures are
warranted. Datastreams can be in the form of serum markers, medical imaging, or visual or
endoscopic examination. Each of these modalities provides opportunities for the integration
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